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More Classical Problems 
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• Part 1: Logical Clocks 
• Part 2: Vector Clocks 
• Part 3: Distributed Snapshots 
•
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Part 1: Logical Clocks
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• For many problems, internal consistency of clocks is 
important 
– Absolute time is less important 
– Use logical clocks 

• Key idea: 
– Clock synchronization need not be absolute 
– If two machines do not interact, no need to synchronize them 
– More importantly, processes need to agree on the order in 

which events occur rather than the time at which they occurred
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Event Ordering
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• Problem: define a total ordering of all events that occur 
in a system 

• Events in a single processor machine are totally ordered 
• In a distributed system: 

– No global clock, local clocks may be unsynchronized 
– Can not order events on different machines using local times 

• Key idea [Lamport ] 
– Processes exchange messages 
– Message must be sent before received 
– Send/receive used to order events (and synchronize clocks)
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Happened Before Relation
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• If A and B are events in the same process and A executed before B, 
then  A -> B 

• If A represents sending of a message and B is the receipt of this 
message, then A -> B 

• Relation is transitive: 
– A -> B and B -> C  => A -> C 

• Relation is undefined across processes that do not exchange 
messages 
– Partial ordering on events
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Event Ordering Using HB
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• Goal: define the notion of time of an event such that 
– If A-> B then C(A) < C(B) 
– If  A and B are concurrent, then C(A)  <, = or > C(B) 

• Solution:  
– Each processor maintains a logical clock  LCi 

– Whenever an event occurs locally at I, LCi = LCi+1 

– When i sends message to j, piggyback Lci 
– When  j receives message from i 

• If LCj < LCi then LCj = LCi +1 else do nothing 
– Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks
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Total Order
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• Create total order by attaching process number to an 
event.  If time stamps match, use process # to order
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Example: Totally-Ordered Multicasting
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• Updating a replicated database and leaving it in an inconsistent 
state.
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Algorithm
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● Totally ordered multicasting for banking example 
● Update is timestamped with sender’s logical time 

● Update message is multicast (including to sender) 

● When message is received 
! It is put into local queue 
! Ordered according to timestamp, 
! Multicast acknowledgement 

! Message is delivered 
! It is at the head of the queue 
! IT has been acknowledged by all processes 
! P_i sends ACK to P_j if   

– P_i has not made a request 
– P_i update has been processed and P_i’s ID > P_j’s Id
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Part 2: Causality
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• Lamport’s logical clocks 
– If  A -> B then C(A) < C(B) 
– Reverse is not true!! 

• Nothing can be  said about events by comparing time-
stamps! 

• If C(A) < C(B), then ?? 
• Need to maintain causality 

– If a -> b then a is casually related to b 
– Causal delivery:If send(m) -> send(n) => deliver(m) -> 

deliver(n) 
– Capture causal relationships between groups of processes 
– Need a time-stamping mechanism such that: 

• If T(A) < T(B) then A should have causally preceded B
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Vector Clocks
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• Each process i maintains a vector Vi 
– Vi[i] : number of events that have occurred at i 
– Vi[j] : number of events I knows have occurred at process j 

• Update vector clocks as follows 
– Local event: increment Vi[i] 
– Send a message :piggyback entire vector V 
– Receipt of a message: Vj[k] = max( Vj[k],Vi[k] ) 

• Receiver is told about how many events the sender knows 
occurred at another process k 

• Also Vj[j] = Vj[j]+1 
• Exercise: prove that if V(A)<V(B), then A causally 

precedes B and the other way around.
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Enforcing Causal Communication
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• Figure 6-13. Enforcing causal communication.



CS677: Distributed and Operating Systems Lecture 14, page 

Part 3: Global State
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• Global state of a distributed system 
– Local state of each process 
– Messages sent but not received (state of the queues) 

• Many applications need to know the state of the system 
– Failure recovery, distributed deadlock detection 

• Problem: how can you figure out the state of a 
distributed system? 
– Each process is independent 
– No global clock or synchronization 

• Distributed snapshot: a consistent global state
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Global State (1)
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a) A consistent cut 
b) An inconsistent cut
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Distributed Snapshot Algorithm

15

• Assume each process communicates with another 
process using unidirectional point-to-point channels (e.g, 
TCP connections) 

• Any process can initiate the algorithm 
– Checkpoint local state  
– Send marker on every outgoing channel 

• On receiving a marker 
– Checkpoint state if first marker and send marker on outgoing 

channels, save messages on all other channels until: 
– Subsequent marker on a channel: stop saving state for that 

channel
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Distributed Snapshot
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• A process finishes when 
– It receives a marker on each incoming channel and processes 

them all 
– State: local state plus state of all channels 
– Send state to initiator 

• Any process can initiate snapshot 
– Multiple snapshots may be in progress  

• Each is separate, and each is distinguished by tagging the 
marker with the initiator ID (and sequence number)

A
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M
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Snapshot Algorithm Example
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a) Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example
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b) Process Q receives a marker for the first time and records its local state 
c) Q records all incoming message 
d) Q receives a marker for its incoming channel and finishes recording the state of the 

incoming channel
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Termination Detection
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• Detecting the end of a distributed computation 
• Notation: let sender be predecessor, receiver be successor 
• Two types of markers: Done and Continue 
• After finishing its part of the snapshot, process Q sends a Done or 

a Continue to its predecessor 
• Send a Done only when 

– All of Q’s successors send a Done 
– Q has not received any message since it check-pointed its local state and 

received a marker on all incoming channels 
– Else send a Continue 

• Computation has terminated if the initiator receives Done 
messages from everyone


