
CS677: Distributed and Operating Systems Lecture 14, page

More Classical Problems

1

• Part 1: Logical Clocks
• Part 2: Vector Clocks
• Part 3: Distributed Snapshots
•

CS677: Distributed and Operating Systems Lecture 14, page

Part 1: Logical Clocks

2

• For many problems, internal consistency of clocks is
important
– Absolute time is less important
– Use logical clocks

• Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to synchronize them
– More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

CS677: Distributed and Operating Systems Lecture 14, page

Event Ordering

3

• Problem: define a total ordering of all events that occur
in a system

• Events in a single processor machine are totally ordered
• In a distributed system:

– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local times

• Key idea [Lamport]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)

CS677: Distributed and Operating Systems Lecture 14, page

Happened Before Relation

4

• If A and B are events in the same process and A executed before B,
then A -> B

• If A represents sending of a message and B is the receipt of this
message, then A -> B

• Relation is transitive:
– A -> B and B -> C => A -> C

• Relation is undefined across processes that do not exchange
messages
– Partial ordering on events

CS677: Distributed and Operating Systems Lecture 14, page

Event Ordering Using HB

5

• Goal: define the notion of time of an event such that
– If A-> B then C(A) < C(B)
– If A and B are concurrent, then C(A) <, = or > C(B)

• Solution:
– Each processor maintains a logical clock LCi

– Whenever an event occurs locally at I, LCi = LCi+1

– When i sends message to j, piggyback Lci
– When j receives message from i

• If LCj < LCi then LCj = LCi +1 else do nothing
– Claim: this algorithm meets the above goals

CS677: Distributed and Operating Systems Lecture 14, page

Lamport’s Logical Clocks

6

CS677: Distributed and Operating Systems Lecture 14, page

Total Order

7

• Create total order by attaching process number to an
event. If time stamps match, use process # to order

a
b

P1 P2 P3

c
d

e

f

g

h

i

j

k

l

1.1 1.2
1.32.1

3.2
2.33.1

4.1 4.2

5.2

6.2

3.3

CS677: Distributed and Operating Systems Lecture 14, page

Example: Totally-Ordered Multicasting

8

• Updating a replicated database and leaving it in an inconsistent
state.

CS677: Distributed and Operating Systems Lecture 14, page

Algorithm

9

● Totally ordered multicasting for banking example
● Update is timestamped with sender’s logical time

● Update message is multicast (including to sender)

● When message is received
! It is put into local queue
! Ordered according to timestamp,
! Multicast acknowledgement

! Message is delivered
! It is at the head of the queue
! IT has been acknowledged by all processes
! P_i sends ACK to P_j if

– P_i has not made a request
– P_i update has been processed and P_i’s ID > P_j’s Id

CS677: Distributed and Operating Systems Lecture 14, page

Part 2: Causality

10

• Lamport’s logical clocks
– If A -> B then C(A) < C(B)
– Reverse is not true!!

• Nothing can be said about events by comparing time-
stamps!

• If C(A) < C(B), then ??
• Need to maintain causality

– If a -> b then a is casually related to b
– Causal delivery:If send(m) -> send(n) => deliver(m) ->

deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

CS677: Distributed and Operating Systems Lecture 14, page

Vector Clocks

11

• Each process i maintains a vector Vi
– Vi[i] : number of events that have occurred at i
– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows
– Local event: increment Vi[i]
– Send a message :piggyback entire vector V
– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[j] = Vj[j]+1
• Exercise: prove that if V(A)<V(B), then A causally

precedes B and the other way around.

CS677: Distributed and Operating Systems Lecture 14, page

Enforcing Causal Communication

12

• Figure 6-13. Enforcing causal communication.

CS677: Distributed and Operating Systems Lecture 14, page

Part 3: Global State

13

• Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

• Distributed snapshot: a consistent global state

CS677: Distributed and Operating Systems Lecture 14, page

Global State (1)

14

a) A consistent cut
b) An inconsistent cut

CS677: Distributed and Operating Systems Lecture 14, page

Distributed Snapshot Algorithm

15

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

CS677: Distributed and Operating Systems Lecture 14, page

Distributed Snapshot

16

• A process finishes when
– It receives a marker on each incoming channel and processes

them all
– State: local state plus state of all channels
– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

CS677: Distributed and Operating Systems Lecture 14, page

Snapshot Algorithm Example

17

a) Organization of a process and channels for a distributed snapshot

CS677: Distributed and Operating Systems Lecture 14, page

Snapshot Algorithm Example

18

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the state of the

incoming channel

CS677: Distributed and Operating Systems Lecture 14, page

Termination Detection

19

• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

